If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6u^2+24u-72=0
a = 6; b = 24; c = -72;
Δ = b2-4ac
Δ = 242-4·6·(-72)
Δ = 2304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2304}=48$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-48}{2*6}=\frac{-72}{12} =-6 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+48}{2*6}=\frac{24}{12} =2 $
| (6x)+(x-9)=180 | | 4(1.08)^x+13=13 | | y=10-10^-2y | | y=10-10^-y | | -5+5t=180 | | 15+6x=-45+8x | | 17a=41a=3 | | -15+6x=45+8x | | 47+19x=180 | | -5x^2+30x-165=0 | | 19x+57=180 | | 2x(32)×2x(24)=100 | | 37x+106=180 | | 24b+60=180 | | 133+47x=180 | | 1x(32)2x(24)=100 | | N+0.3n=65 | | 5y+2=8y-11 | | 18x^2+9x-35=- | | x÷6=2 | | k^2+6k-53=2 | | 10x‒4x‒15,600=12,000 | | 9x-15+7x+5=180 | | X+13+4x+32=180 | | X+5+3x+10=47 | | x/2=1/4 | | 3b^2+7b+-6=0 | | 68x+76x=100 | | n^2+2n-93=6 | | 20*2.7^(2x)=50 | | 202.7^(2x)=50 | | 2.3x^2-9x-18=0 |